A protected annealing strategy to enhanced light emission and photostability of YAG:Ce nanoparticle-based films.
نویسندگان
چکیده
A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous control of structure, particle size and size distribution, while maintaining the optical properties of bulk samples. Preparation conditions frequently involve high-temperature treatments of precursors (up to 1400 °C), which result in increased particle size and aggregation, and lead to oxidation of Ce(iii) to Ce(iv). We report here a process that we term protected annealing, that allows the thermal treatment of preformed precursor particles at temperatures up to 1000 °C while preserving their small size and state of dispersion. In a first step, pristine nanoparticles are prepared by a glycothermal reaction, leading to a mixture of YAG and boehmite crystalline phases. The preformed nanoparticles are then dispersed in a porous silica. Annealing of the composite material at 1000 °C is followed by dissolution of the amorphous silica by hydrofluoric acid to recover the annealed particles as a colloidal dispersion. This simple process allows completion of YAG crystallization while preserving their small size. The redox state of Ce ions can be controlled through the annealing atmosphere. The obtained particles of YAG:Ce (60 ± 10 nm in size) can be dispersed as nearly transparent aqueous suspensions, with a luminescence quantum yield of 60%. Transparent YAG:Ce nanoparticle-based films of micron thickness can be deposited on glass substrates using aerosol spraying. Films formed from particles prepared by the protected annealing strategy display significantly improved photostability over particles that have not been subject to such annealing.
منابع مشابه
Nano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy
ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...
متن کاملEnhanced forward efficiency of Y3Al5O12:Ce3+ phosphor from white light-emitting diodes using blue-pass yellow-reflection filter.
This paper reports a simple approach for the design of blue-excitation-light passing and phosphor-yellow-emission-light reflecting dielectric multilayers to recycle the backward emission of Y(3)Al(5)O(12):Ce(3+) (YAG:Ce) yellow phosphors on top of a blue InGaN light-emitting diode (LED) cup. The insertion of modified quarter-wave films of alternate high- and low-refractive index dielectric film...
متن کاملNano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy
ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...
متن کاملCorrelation between crystal structure and optical properties of copper- doped ZnO thin films
ZnO and Cu doped[1] (CZO) thin films were prepared by radio frequency sputtering. The structural and optical properties of thin films were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), optical spectrophotometer, and photoluminescence (PL) techniques. ZnO thin films showed crystalline and micro-stress defects in the crystal lattice. Annealing of CZO thin films increa...
متن کاملStructural, Optical and Defect State Analyses of ZnO Nanoparticle Films
Synthesis of ZnO nanostructures films by a co-precipitation followed by the deposition processed onto a glass substrate by spin-coating technique was carried out. The effect of annealing temperatures (from 250 to 325 °C for 30 min) on the structural and optical properties of the ZnO films have been investigated. The structural studies reveal that ZnO films are polycrystalline with hexagonal wur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 3 5 شماره
صفحات -
تاریخ انتشار 2011